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Abstract 

A method is described for the analysis of symmetry- 
less or low-symmetric coordination polyhedra with 
respect to their pseudosymmetry, regardless of 
coordination number. With lattice sums of spherical 
harmonics, symmetry-adapted orientations of the real 
polyhedra in the various point groups are ascertained 
by fitting procedures. The idealized polyhedra can 
then be constructed by averaging and optimizing the 
positional parameters of those atoms which are sym- 
metry equivalent in the idealized arrangements. The 
degree of distortion of the real polyhedra with regard 
to the idealized polyhedra is specified by the mean 
value of relative atom displacements. The method can 
assist in the investigation of factors affecting crystal 
structure and in the interpretation of spectroscopic 
and magnetic properties of compounds with d and f 
elements. The analysis is applied to LiCeO2 where a 
symmetryless arrangement of the O atoms around the 
Ce atom occurs with coordination number seven. 

1. Introduction 

In the discussion of crystal structures the description 
of the existing coordination polyhedra (CP) and their 

* Present address: Institut fiir Anorganische Chemic der Tech- 
nischen Hochschule Aachen, D-5100 Aachen, Federal Republic 
of Germany. 

comparison with known ideal arrangements are of 
great importance (Wells, 1984). The investigation of 
the relationship between real, i.e. normally distorted, 
polyhedra and ideal polyhedra can be useful in 
various ways such as the ascertainment of factors 
affecting crystal structure. In the case of complexes 
the shape of the CP will depend on the chemical 
bonding between the central atom and the ligands, 
on mutual repulsions of the ligands, and on the pack- 
ing relations in the crystal structure (Hoard & Silver- 
ton, 1963). The consequences of these influences are 
in most cases distortions relative to those polyhedron 
models that are predicted, for example, from the pure 
electrostatic point of view (point charges) or from 
the packing of rigid spheres. In intermetallic com- 
pounds deviations from Laves principles (Laves, 
1956) can occur if covalent bonds, i.e. bonds with 
directional character, exist (Pearson, 1972). Idealiz- 
ations of low-symmetric arrangements with a special 
pseudosymmetry also facilitate the investigation of 
spectroscopic and magnetic properties of transition- 
metal and rare-earth compounds. Raising the sym- 
metry normally leads to a drastic decrease of the 
number of crystal-field parameters and therefore 
reduces the problem. 

The description and idealization of low-symmetric 
CP can be complicated by a high degree of distortion, 
by an unsuitable orientation of the CP to the cell 
edges and/or  by high coordination numbers (CN). 
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188 LOW-SYMMETRIC COORDINATION POLYHEDRA 

An increase in the distortion from ideal conformation 
and an increase in the CN generally speaking leads 
to an increasing number of possible idealizations. In 
order to distinguish between different idealized poly- 
hedra (for instance between square antiprism and 
dodecahedron in the case of CN 8), various sugges- 
tions were made in the past. So-called shape param- 
eters were introduced such as angles between con- 
necting lines M - X  and the main axis of symmetry 
(M central atom, X ligand), the ratio of interatomic 
distances, and dihedral angles between appropriate 
planes (Hoard & Silverton, 1963; Kepert, 1965; 
Lippard, 1967; Lippard & Russ, 1968; Muetterties & 
Wright, 1967; Porai-Koshits & Aslanov, 1972; 
Muetterties & Guggenberger, 1974). The disadvan- 
tages of these methods are the following: (i) the choice 
of appropriate shape parameters depends on the poly- 
hedron type; (ii) the choice of shape parameters 
becomes more and more complicated with increasing 
CN; (iii) it is hard to define a unit of measure by 
which to determine numerically the best possible 
idealized polyhedra. Some of these disadvantages are 
avoided in the approach of Dollase (1974). In his 
method the distortion of a real coordination polyhe- 
dron is determined by comparison with a set of ideal- 
ized coordinates which are ascertained from an initial 
set of the required symmetry by least-squares fit. This 
method can be applied especially in the case of high 
symmetries and small CN. 

We, however, are searching for a method of general 
application which determines rapidly the pseudo- 
symmetry of a distorted coordination polyhedron, 
independent of CN and any starting sets of idealized 
coordinates. To start with we describe the main ideas 
of the method and the computer program. After that 
we present some results of calculations on a poly- 
hedron with seven vertices. 

2. Analysis of pseudosymmetry and method 
of idealization 

2.1. Outline 

In order to analyse low-symmetric arrangements 
with respect to their pseudosymmetry, calculations 
are carded out in two steps as illustrated in Fig. 1. A 
central atom M is irregularly surrounded by four 
ligands X;  for simplicity all five atoms are in the 
same plane. The quadrangle can be idealized for 
instance by an arrangement with point symmetry 
4/mmm, i.e. a square [other possibilities are mmm 
(rectangle) or 2 /m (parallelogram)]. In the first step 
position B, which is related to a Cartesian coordinate 
system with the central atom at the origin and adapted 
to the symmetry 4/mmm, is derived from the real 
position A. In the second step the idealized structure 
C is constructed under two constraints: (i) the four 
symmetry-equivalent and therefore identical dis- 

tances M - X  of C are obtained from the mean value 
of the four different distances in the real structure; 
(ii) going from the real to the idealized structure the 
sum of ligand displacements has to be a minimum. 
the minimum total can serve to measure the quality 
of idealization. 

If the same pattern is applied to three dimensions 
the first step of the calculations obviously is to ascer- 
tain (by spatial rotations around M) the suitable 
position B (see § 2.2) which is adapted to a distinct 
point symmetry P and which can serve in the second 
step as a basis of the idealization C (see § 2.3). 

2.2. Determination of the symmetry-adapted orien- 
tations of the real coordination polyhedron ( CP) 

The symmetry-adapted orientations of the real CP 
can be achieved through the lattice sums 

CN 

S(k, q ) =  ~ (1/Rk+~)P~,(COS Oj) exp (-iq~oj), 
j = l  

where CN is the number of coordinated ligands; Rj, 0~ 
and ~oj are polar coordinates of the j th ligand, and 
the functions Pqk(COS 0) exp (--iq~o) are spherical har- 
monics apart from a constant factor.* In the case of 
symmetryless CP (point symmetry 1), in principle all 
S(k, q) with k = 1, 2 , . . . ,  oo; 0_~ q _  k can make con- 
tributions to V = ~'.k ~,q S( k, q). With increasing point 
symmetry the number of terms decreases; in a charac- 
teristic manner for each point group P terms with 
distinct (k, q) values are absent in accordance with 
group theory (Gerloch & Slade, 1973). In Fig. 2 some 
examples are presented (1, 2/m, mmm, 4/mmm). In 
order to reduce computation time we have only used 
the terms with k -< 6. They are sufficient to distinguish 
between the symmetries of the normally occurring 
polyhedra as the arrays of the corresponding (k, q) 
values are different (the only exceptions are the pairs 
622-6/mmm and 432-m3m which, by using k-~6, 
lead to the same (k, q) pattern and are therefore 

* The lattice sums S(k, q) multiplied by electric charges are the 
ligand factors of the crystal-field operator and describe the charge 
distribution in the vicinity of a metal ion (Judd, 1963; Hutchings, 
1964). 

y Y Y' 

(a) (b) (c) 

Fig. 1. Idealization of a quadrangle by a square; (a) real conforma- 
tion; (b) symmetry-adapted conformation; (c) idealized confor- 
mation. 
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indistinguishable). Since the S(k, q) are complex 
quantities (with the exception of terms with q = 0 
which are real), they are separated into real and 
imaginary parts, S~(k, q) and Si(k, q) respectively. 
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Fig. 2. Arrays of k and q for the point symmetries 1, 2/m, mmm 
and 4/mmm. 

The arrays of Fig. 2 are obtained only if the ligands 
hold distinct positions with respect to the axes of a 
Cartesian coordinate system (e.g. the main symmetry 
axis coincide with the z axis etc.). From these ideal 
positions, small displacements of the ligands produce 
relatively small contributions of those Sr(k, q) and 
Si(k, q) that are absent in the ideal structure. 

This behaviour of the lattice sums can be exploited 
for the determination of a convenient orientation of 
the real structure with regard to the point group P of 
interest: in low-symmetric polyhedra with a distinct 
pseudosymmetry P the symmetry-adapted orienta- 
tion is characterized by the smallest total of those 
lattice sums that are quenched in the ideal structure. 
This orientation is gained by rotating the real CP 
around the central atom. In this process it is necessary 
that the various lattice sums are entered into the fit- 
ring procedures* with comparable weight. Because 
the range of the individual lattice sums can 
differ widely [e.g. [s(a, 4)maxl/ls(a,O)max["102; 
IS(6, 6)maxl/lS(6, 0)max[--" 105] normalization factors 
f(k,  q) have to be introduced. In our calculations we 
have chosen f(k,  q ) =  1/]S(k, q)~ax[ where the index 
s indicates a reference to one single M - X  group. 
The distance RM_x which is necessary to calculate 
the f(k,  q) is chosen to be the mean value of all 
distances M - X  of the real CP. In order to compare 
fits on the basis of several P differing among other 
things in the number N(P)  of the lattice sums entering 
the minimization process, and in order to be indepen- 
dent of CN, normalizations with respect to N(P)  and 
CN are also carded out. Consequently, in the fitting 
procedure we are looking for an orientation of the 
real CP with regard to P that minimizes the function 

W(P) = 1/{N(P) x CN}/Y.f(k', 0)lS(k', 0)1 
L k  

+ Y, X f (k ' ,  q')lSr(k', q')J 
k' q '#O 

+ ~, ~, f (  k', q')lS,( k', q')l[- 
k' q'#O d 

The summations k' and q' extend over those lattice 
sums that are quenched in the ideal structure.t In 
general the real and imaginary parts have different 
(k', q') combinations (see Fig. 2). 

For practical use, i.e. for reducing computer time 
(see Appendix 2), it is sufficient to calculate W(P) 
only for a few of the infinite number of possible 

* The fitting program is based on standard methods (Spiith, 
1974). 

~f In the cubic and icosahedral point groups constant ratios 
between some of the remaining terms exist, i.e. St(4, 4)/S(4, O)= 
120 and S, (6 ,4) /S(6 ,0)=-2520 in the cubic groups, and 
S,(6, 5)/S(6, O) = 5040 in the icosahedral point group Ih. In order 
to achieve adaptations with respect to these point groups additional 
terms corresponding to deviations from these ideal ratios have to 
be included in the optimization process. 
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orientations. A convenient method is to choose 
special points such as the position of single atoms X 

X - X  
or the centre of gravity of pairs X-X,  triangles \ / 

X 
etc. which are then set on the positive z axis by 
rotation around the central atom. In each case this 
operation is followed by rotations around the z axis 
from 0 to 180 ° in steps of 1 °. In each orientation 
W(P) is calculated. Finally the best orientation with 
lowest W(P) value can be determined. 

2.3 Construction of the idealized coordination 
polyhedra 

Once the best symmetry-adapted orientation of the 
real CP has been found, it is possible to construct 
the idealized CP. Since the orientation of the sym- 
metry elements of P with regard to the real structure 
is now fixed the ligands can be associated with the 
idealized positions of P. To begin with the average 
is calculated of each of the real spherical coordinates 
of those n ligands which occupy a site with multi- 
plicity n in the idealized polyhedra, i.e. which are 
symmetry equivalent.* These positional parameters 
can serve as initial values in order to obtain the ideal 
parameters which give a minimum in the relative 
atom displacements AR'. 

CN 
AR'=  (1/CN) ~ {[lj(real) - Rj(ideal)l/[Rj(real)[}. 

j = l  

AR' is the measure of the quality of idealization. It 
can be minimized (i) by optimization of the coordi- 
nates 0 and ¢ and (ii) by rotations of the real CP 
around the three coordinate axes changing rotation 
angles by <- 0.1 °. The reason for (ii) is that in general 
the position found in §2 using normalized lattice sums 
is not necessarily the best orientation with respect to 
the new minimization condition AR ~. 

The optimization procedures and the association 
of the atoms with the various sites are best explained 
by an example and are described in more detail in 
§ 3.2 and the Appendix. 

3. Application of the method to heptacoordination 
in LiCeO2 

3.1. Ideal coordination polyhedra 

In the case of heptacoordination four ideal poly- 
hedra (Fig. 3) have been discussed (Muetterties & 
Wright, 1967) which are the trigonal prism capped 
on a rectangle (ram2), the ca_ pped octahedron (3m), 
the pentagonal bipyramid (10m2), and the tetragonal 
base-trigonal base (m). The last model consists of a 

* A ligand is set on a distinct special position of P if its real 
position is less distant than 0-6/k from the idealized position. In 
our experience 0-6 ,/k is a suitable distance, but can be changed to 
lower or higher values, depending on the problem. 

Table 1. LiCeO2; Fractional atomic parameters 
(Schiller, 1985) 

x y z 
Li 0.649 (4) 0.138 (4) 0.158 (4) 
Ce 0.20028(6) 0.06802(7) 0-30630(7) 
O(1) -0.0859 (10) 0.2612 (10) 0-4886(10) 
0(2) 0.4295 (10) 0.1275 (10) 0.7137 (ll) 

square and a triangle (with equal sides) on parallel 
planes. In idealized form there are two alternatives 
depending on the relative orientation of the square 
and the triangle, both having P--  m. A fifth CP with 
P = 2  is possible from energetic considerations 
(Claxton & Benson, 1966); up to now, however, in 
real structures, it has not to our knowledge been found 
and therefore is not discussed here (but see § 3.3). 

3.2. Analysis of the CeO7 polyhedron 

LiCeO2 [8-LiSmO2 (Gondrand, 1970)] crystallizes 
on a monoclinic lattice (space group P12~/cl) with 
the cell parameters a=5 .824(1) ,  b=6.166(1) ,  c=  
5.793 (1) ,~, fl = 102.48 (2) ° and Z = 4  (Schiller, 
1985). All atoms in the unit cell occupy the general 
position with parameters shown in Table 1. The Ce 
atom is surrounded by seven O atoms at distances of 
2.43-2.54 ~ (Fig. 4). The polyhedron consists of four 
O(1) (nos. 2, 3, 6, 7) and three 0(2) (nos. 1,4, 5) 
atoms. With respect to a Cartesian coordinate system 
with the Ce atom at the origin the O atoms have 
coordinates and distances to the central atom as 
shown in Table 2. 

(a) 

(c) 

(d) 

(b) 

1 2 

Fig. 3. Ideal polyhedra for coordination number  7; (a) trigonal 
prism capped on a rectangle (point symmetry mm2); (b) capped 
octahedron (3m); (c) pentagonal bipyramid (10m2); (d) 
tetragonal base-trigonal base (m), two conformations. 
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Table 2. LiCeO2; Cartesian coordinates (~) of the 
seven 0 atoms and their distances from Ce (at the 

origin) 

O atom no.* x y z R 

1 2-11 -1.21 -0.58 2-49 
2 -0-65 -2.03 1.33 2.51 
3 -1.63 1.19 1.42 2.46 
4 1.30 1.88 -0.83 2.43 
5 1.30 0.37 2.07 2.47 
6 -1.63 1.05 -1.48 2.44 
7 -0.65 -1-89 -1.56 2.54 

* See Fig. 4. 

3.2.1. ram2. In order to determine the symmetry- 
adapted orientation of the CeO7 polyhedron with 
respect to ram2, 33 normalized lattice sums must be 
considered in the minimization process [see (k, q) 
array in Fig. 5a]. Since the atomic positions of the 
point group mm2* have multiplicities 1,2 and 4 
respectively, it is convenient to choose either single 
O atoms or the centre of gravity of all pairs or quad- 
rangles which are then set on the positive z axis by 
rotation around the central atom (see § 2.2). Details 
of the best orientations obtained in the three cases 
are summarized in Table 3. The data are supple- 
mented by the mean value V(P) of all normalized 
lattice sums and by the ratio p(P)= W(P)/V(P) .  
The latter gives a fair indication whether a convenient 
adaptation to P has been achieved. The second (k, q) 
array in Fig. 5(b) illustrates the normalized lattice 
sums related to orientation I in a quantitative form 
[in order to underline the differences between the 
lattice sums they are also normalized to the maximum 
contribution produced by f(6,  4)Sr(6, 4), which term 
is represented as a circle]. Obviously all normalized 
lattice sums that are quenched in ram2 yield only 
small contributions. 

* Genera l  posi t ion:  (x, y, z; 2, )7, z; x, ~, z; 2, y, z); special posi- 
tions: (x, 0, z; 2, 0, z); (0, y, z; 0, )7, z);  (0, 0, z). 

2 

e i 
i 

, I 
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, I 
i I i 
, I 

, i I 

\ '  I 

I 

L 

Fig. 4. Uni t  cell o f  LiCeO2; only  the Ce atoms ( 0 )  and the next  
O-a tom neighbours  (©) for  one  Ce a tom are shown. 
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Table 3. LiCeO2; Symmetry-adapted orientation of the 
CeO7 polyhedron with respect to mm2 

Points* on 
positive Nos. of O 

Orientation z axis atoms W? (ram2) Vt (mm2) pf  (ram2) 
I Single atoms 5 0.042 0.094 0-44 
II Pairs 6, 7 0.040 0.094 0.43 
III Quadrangles 1, 2, 3, 4 0-076 0.102 0.75 

* Centre of gravity. 
"t See text. 

Inspect ing  Table  3, one  notes  that 
(i) the relat ively l ow  ratios p(mm2) indicate  what  

have  in our exper ience  been  satisfactory adaptat ions  
1~o the po int  group o f  interest; 
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Fig. 5. Symmet ry -adap ted  or ien ta t ion  and ideal izat ion o f  the CeO7 
po lyhed ron  with respect  to ram2; (a) (k, q) array for  ram2; (b) 
normal ized  lattice sums re la ted to or ientat ion I (see Table  3); 
(c) real and  ideal ized structures.  
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Table 4. LiCeO2; Cartesian coordinates (,~ ) o f  real and idealized positions of  0 atoms in the CeO7 polyhedron 
(Ce at origin) with respect to ram2 

Real  s t ruc ture  Idea l ized  s t ruc ture  
O a tom no.  Mul t ip l ic i ty  x y z R x y z R A R '  A R  (~ , )  

5 1 O- 11 0.02 2.47 2.47 0 0 2.47 2-47 0.045 O. 11 

6 2 0.15 -1.48 -1-94 2-44 0 -1.55 -1.94 2-49 0.070 0.17 
7 2 0.04 1.63 - 1.95 2.54 0 1.55 - 1.94 2.49 0.035 0.09 

1 4 -1.69 1-77 0.51 2.49 -1.80 1.64 0.42 2.48 0.076 0-19 
2 4 1-77 1'75 0"38 2.51 1"80 1"64 0.42 2.48 0"048 0"12 
3 4 1-81 - 1"62 0.44 2.46 1"80 - 1"64 0.42 2.48 0-012 0-03 
4 4 - 1"94 -1-42 0"38 2.43 - 1'80 - 1-64 0-42 2-48 0-107 0"26 

AR' = 0.056 A---~ = O. 14 

(ii) obviously, the three orientations I, II and III 
correspond to nearly equivalent positions of the poly- 
hedron with respect to the z axis. O atom 5 has to 
be associated with the ideal special position with 
multiplicity one of the point group mm2; by the same 
token, atoms 6, 7 and 1, 2, 3, 4 correspond to the 
twofold and fourfold ideal positions respectively. 
Consequently, any of the three orientations can serve 
as a basis for the same idealization. 

To give an example, the results of the calculation 
of the idealized positions with respect to orientation 
I after minimizing AR' are shown in Table 4 and Fig. 
5(c) (AR '=  0.056; The corresponding absolute mean 
displacement is AR =0.14/~) .  The construction of 
the idealized polyhedron is described in more detail 
in the Appendix. 

3.2.2. 3m. The symmetry-adapted orientation of 
the CeO7 polyhedron corresponding to 3m can be 
determined in a fashion analogous to that described 
for the adaptation to ram2. The number of lattice 
sums considered in the minimization process of § 2 
is 37. Instead of choosing pairs and quadrangles as 
in the case of mm2 the centre of gravity of triangles 
(besides single atoms) is set on the positive z axis. 
The ratios p(3m) are greater than in the adaptation 
to ram2, i.e. the 3m adaptation is less successful. The 
construction of the idealized polyhedron can be car- 
ded out with AR '=0 .104  (AR=0.26/~,) ,  which is 

twice as much as in the adaptation to mm2 (see 
Fig. 6). 

3.2.3. 1-0m2. The adaptation of the CeO7 poly- 
hedron to 1--0m2 is unprofitable because p(]-Om2) is 
relatively high ( = 0.95). Therefore, we do not discuss 
the idealization related to this point group (but, in 
principle, the construction of an idealized polyhedron 
with respect to 10m2 would be possible). 

3.2.4. m. With respect to this symmetry* a better 
adaptation of the real polyhedron than in the case of 
mm2 is possible [p(m)-~0.25;  AR'=0.033,  A R =  
0.08/~]; this is reasonable because m is a subgroup 
of mm2 (see § 3.3). 

In order to get a symmetry adaptation to the 
tetragonal base-trigonal base (Fig. 3d) which is of 
great importance in the discussion of structural 
relationships (see e.g. Rinck, 1982), the extinction 
conditions of the lattice sums have to be modified. 
In the case of a square and a triangle (with equal 
sides) orientated on planes parallel to the xy plane 
and with the mirror in the xz plane additional lattice 
sums with q = 1, 2 and 5 are quenched [we take the 
symbol m(4, 3) for this special case of m]. 

The idealization process yields a tetragonal base- 
trigonal base of conformation (1) with AR '=0 .047  

* I f  t h e  m i r r o r  p l a n e  c o r r e s p o n d i n g  t o  t h e  p o i n t  g r o u p  m l i e s  i n  

t h e  x z  p l a n e  a l l  i m a g i n a r y  p a r t s  o f  t h e  l a t t i c e  s u m s  a r e  q u e n c h e d .  

F ig .  6. S y m m e t r y - a d a p t e d  o r i e n t a t i o n  a n d  i d e a l i z a t i o n  o f  t h e  C e O 7  

p o l y h e d r o n  w i t h  r e s p e c t  t o  3 m. 

z 
' 

3. , \ 

,__y Y 

F ig .  7. S y m m e t r y - a d a p t e d  o r i e n t a t i o n  a n d  i d e a l i z a t i o n  o f  t h e  C e O  7 

p o l y h e d r o n  w i t h  r e s p e c t  t o  m ( 4 ,  3 ) .  
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[see Figs. 3(d) and 7].* The atoms have to be dis- 
placed by an average of AR =0.12 A, i.e. by nearly 
the same extent as in the mm2 model. This result 
confirms that the tetragonal base-trigonal base is very 
similar to the capped trigonal prism. 

3.3. Rdsumd 

In addition to the m, mm2 and 3m models, idealiz- 
ations of the CeO7 polyhedron with respect to the 
point groups 2 and 3 have been undertaken. All results 
are summarized in Table 5. A comparison of AR' 
values in different idealizations shows that they 
undergo characteristic changes: from the various 
pairs of idealizations with respect to point groups 
which are related in the sense of group-subgroup, 
the polyhedron model with the smaller number of 
symmetry elements (i.e. with the greater number of 
independent parameters R, 0, q~ of the polyhedron 
vertices) always has the lower AR' value.t 

4. Interpretation of the magnetic properties of LiCeO2 

According to the matter of investigation, parameters 
like AR' lend themselves to various purposes: In the 
cases where the points of interest are factors affecting 
crystal structure, high-symmetric polyhedra are often 
suitable as standards of comparison. Relatively high 
AR' values may occur if the real structures are 
sufficiently distorted. In the ease of models which are 
applied to the interpretation of physical properties 
idealizations with a high AR' value may lead to over- 
simplification and loss of accuracy which have to be 
avoided. We have applied the idealization program 
in order to obtain an interpretation of the magnetic 
properties of LiCeO2 on the basis of a point-charge 
model.~ Susceptibility measurements (temperature 
range 3.8 to 295 K; see Fig. 8) show that the magnetic 
moment of the Ce 3+ (4f 1) ion depends on tem- 
perature, resulting in strong deviations from Curie- 
Weiss behaviour (Lueken, Hannibal & Stamm, 1984). 
The reason for this is that crystal-field effects perturb 
the free-ion ground-state term 2F5/2. It would be 
rather involved to give an accurate description of this 

* In order to distinguish between the two conformations of  the 
tetragonal base-trigonal base the signs of  lattice sums with q = 4 
have to be scrutinized. In conformation (1) St(4, 4) and St(6, 4) 
are negative and St(5, 4) is positive whereas in conformation (2) 
the signs are reversed. 

t In principle, the lower-symmetric polyhedron must lead at 
least to the same A--R' value as the higher symmetric model (Hamil- 
ton, 1965). 

The point-charge model is a highly simplifying approach to 
reality. Nevertheless, it is a valuable tool in magnetochemistry of  
the rare earths because it can often predict crystal-field splittings 
in a satisfactory manner and is easily applied. In more extended 
models, e.g. the angular overlap model (Gerloch, 1983), overlap 
of  the charge clouds of  the central atom with the ligands is con- 
sidered. In this model idealization of  the metal environment with 
respect to symmetry is not necessary. 

Table 5. LiCeO2; Results of  all idealization processes 

Point group m m(4, 3)* 2 ram2 3 3m 1--0m2 
Number  o f  symmetry 

elements 2 2 2 4 3 6 20 
Number  of  independent 

atomic parameters 12 4 10 6 7 5 2 
p(P)'l" 0-25 0.40 0.45 0.55 0-60 0.65 0.95 
AR' 0"033 0-047 0.054 0"056 0-101 0.104 
AR (/~) 0.08 0"12 0-13 0.14 0.25 0-26 - -  

* Special case of m with additional symmetries of parts of the polyhedron 
(see text). 

? Mean value of several orientations. 
No idealization was carded out because of the high p value. 

influence because of the low point symmetry of the 
Ce atoms. In order to simplify the problem the 
geometry of the seven surrounding O atoms (which 
represent the strongest factor in the crystal field) has 
to be idealized, without giving up the necessary 
accuracy. To keep displacements to a minimum the 
m model is the most suitable. In order to simplify 
tl~e magnetochemical analysis it is on the other hand 
convenient to describe the crystal~field effects by a 
Hamiltonian HCF--~k ~ q  B(k, q)O(k, q) [with the 
operator equivalents O(k,q) of Stevens (1952) 
and the crystal-field intensity parameters B(k, q)] 
containing as small a number of terms as possible, 
i.e. with arrangements of high symmetry like 3m 
(three terms in HCF). Owing to the relatively large 
AR' value, however, an idealization to this point 
symmetry has to be rejected because the loss in 
accuracy of the B(k, q) exceeds the acceptable limit 
with regard to chemical-bonding discussions. On the 
other hand, it is justified to take the mm2 model 
rather than the m or 2 model (five instead of eight 
terms) because differences in the corresponding AR' 
values are small• In the mm2 model the magnetic 
properties can be explained with B(k, q) parameters 
that agree satisfactorily with a simple point-charge 
model. The consistency of experimental and calcu- 
lated data is illustrated in Fig. 8. 
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Fig. 8. XmoiT vs T and 1/Xmo I OS T diagrams for LiCeO2; • 
experimental, - -  calculated. 
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APPENDIX 

In order to construct an idealized polyhedron from 
a distorted arrangement the atoms of the real structure 
have to be associated with the special and general 
positions in the point group of interest. As a general 
rule the determination of the (idealized) atomic coor- 
dinates starts with the position(s) of lowest multi- 
plicity and goes on to positions of increasing multi- 
plicity. To illustrate this procedure the idealization 
with respect to mm2 can be used as an example: The 
position of lowest multiplicity is 0, 0, z (multiplicity 
1). In the orientations obtained by step 1 (see Table 
3) 'only O atom 5 of the CeO7 polyhedron is less 
distant than 0.6 A from the z axis (in orientation I 
this atom lies exactly on the axis). If the real atomic 
polar coordinates are in general Rs, 05 and ~5 the 
idealized coordinates are R i  d = Rs, 0i5 d = 0 or 180 ° and 
~isd=0° and the displacements AR5 and AR'5= 
ARs/R5 can be calculated. Finally O atom 5 is rejected 
from the set. 

The two positions with multiplicity 2 are (i) 0, y, z; 
0, fi, z and (ii) x, 0, z; ~, 0, z. In orientation I only the 
atoms 6 and 7 fulfil the 0.6 A criterion with respect 
to position (i), whereas in the case of (ii) no atoms 
are found. From the real coordinates R6, 06 and  R7, 
07 the mean values R~,~7 and 0~,~7 can be calculated. 
The idealized coordinates are obtained in the follow- 
ing way. Owing to the special position of the O atoms, 
~i6'~ must be +90 ° (the sign depends on the sign of 
Y6) and ~i7° = _~d .  Because of the condition concern- 
in.g the idealized M - X  distances (see § 2.1), R~7 = 

ld av 
R6,7, whereas 06, 7 has.in principle to be optimized in 

ld order to determine 06, 7 and to reduce the displace- 
ments AR or AR' to a minimum (in case of LiCeO2 
the difference between R 6 and R7 is small and there- 
fore 0~7 and 0~d7 are nearly identical). From our 
experience, 0 av has to be varied in steps of <-0.01 °. 
After this procedure O atoms 6 and 7 are rejected 
from the set. (In more complicated situations where, 
for instance, three atoms are found with the 0.6/~ 
criterion, the twofold position will be occupied by 
those two atoms that have the smallest total relative 
displacement.) 

Since in the case of the CeO7 polyhedron no further 
atoms are found in the vicinity of symmetry axes and 
planes the remaining four atoms (1-4) have to be 
associated with the general position. From the real 
coordinates the mean values R~2,3,4, 0~v2,3,4 and ~av 
(with the four individual tp values + ~av and 180+ 
~av) can be calculated. By the same token, as in the 
case of the twofold position id a v  R1,2,3,4 = R 1 , 2 , 3 , 4  and, 
owing to the general position of the O atoms, 0~,v2,3.4 
and ~av must be varied in order to get 0idl,2,3,4 and ~id 

which reduce AR or AR' to a minimum. Depending 
on the sign of the parameters xj and yj(j = 1-4), the 

four idealized ~ parameters are then associated with 
the corresponding atoms. (If more than four atoms 
have to be associated with general positions those 
four atoms are selected that lead to the smallest total 
relative displacement.) 

After calculating AR and AR' the sum of all seven 
displacements is known. Finally, the average relative 
displacement AR' is minimized by rotating the real 
arrangement around the three axes of the Cartesian 
coordinate system. 

The calculations were carded out using a 
DEC PDP 11/23 computer with a 64 K core memory. 
In the first step of the program the computation of 
W(P) needs approximately I min for a single orienta- 
tion. In the second step the idealization process needs 
5 s for a single iteration. The computer program 
described is available from the authors on request. 
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